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Domain of Definition of Levermore's
Five-Moment System
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The simplest system in Levermore's moment hierarchy involving moments
higher than second order is the five-moment closure. It is obtained by taking
velocity moments of the one-dimensional Boltzmann equation under the
assumption that the velocity distribution is a maximum-entropy function. The
moment vectors for which a maximum-entropy function exists consequently
make up the domain of definition of the system. The aim of this article is a
complete characterization of the structure of the domain of definition and the
connected maximum-entropy problem. The space-homogeneous case of the
equation and numerical aspects are also addressed.

KEY WORDS: Levermore's moment closure; maximum entropy; moment
realizability; reduced Hamburger moment problem.

Classically, the Euler equations are used to describe the time-evolution of
a gas which is close to local thermodynamical equilibrium. In this macro-
scopic theory the state of the gas is characterized by quantities such as
mass, momentum and energy. In cases of considerable deviation from equi-
librium one might expect that more and more variables are required to
describe the state of the gas. This vague idea has been made precise in the
work by Levermore.(6) Based on the kinetic theory of gases he derives a
whole hierarchy of relaxation systems with the Euler equation as first
member. The approach, which can also be generalized to other kinetic
theories, provides the systems with remarkable properties.

In the kinetic theory, a gas composed of identical particles is described
by the time-evolution of a nonnegative distribution function f(x, v, t)
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specifying the density of particles with velocity v at time t and position x.
For simplicity, we will consider a hypothetical, one-dimensional gas where
the particle velocities are scalars. Correspondingly, position space will also
be one-dimensional in the following.

The evolution of the distribution function is usually governed by a
kinetic equation like the Boltzmann equation
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where the source term Q, a nonlinear operator, describes the details of
particle collisions.

The Euler equations can be recovered from (1) by taking (l,v,v2)
moments and assuming that f is a local Maxwellian distribution. The next
member in the hierarchy is derived similarly but now with the moment
vector

and the distribution function

If we multiply the Boltzmann equation (1) with m(v), integrate over v and
assume f of the form (3) we obtain a system of equations for the coefficient
vector <x(x, t)

Going over to the velocity moments as independent variables

we can write (4) in the form

where the flux vector G is defined by



For a complete understanding of the system it is inevitable to study the
domain of definition of the flux vector G. From the definition (6) we see
that G(p) is well defined whenever a coefficient vector a can be determined
such that
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Here we use the fact, that the coefficient vector a of an exponential density
exp(arm(i;)) is in one-to-one correspondence with the vector of velocity
moments p.(6) The right hand side r{p) in (5) originates in the moment
integral of the collision operator Q(f) and is easily calculated if we use the
BGK-type operator proposed in ref. 6

Altogether, the one-dimensional Cauchy-problem for the five-moment
system is abbreviated as

Since we are interested only in integrable exponential densities, a is
obviously restricted to the set

Consequently, G is defined on the range of moments of the exponential
family

This set  R  also plays an important role in the constrained   maximization
problem of the entropy functional H{f) = — j Rflo gfdv



Indeed, it can be shown that for p e 3$ the maximum in (10) is attained and
has the form exp(arm(i;)).(l0) Conversely, if the maximum is attained, the
vector p must be contained in 01 as we will see below (refs. 4 and 8 treat
similar problems). According to ref. 6, we obtain a natural entropy for
system (8) if we consider (10) as a function of p. For pB0t, the maximum
can be expressed in terms of the unique coefficient vector <x(/?) correspond-
ing to p and, by changing the sign, we obtain the convex entropy
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As far as the Cauchy-problem (8) is concerned, we have to make sure that
po(x)e02 for all xeU, otherwise the problem is not well defined. If p°{U)
is compactly contained in the interior of 01 and p° is sufficiently smooth (8)
has locally a unique classical solution(7) since it is, in fact, a symmetric
hyperbolic system.(6) According to ref. 7, there are exactly two reasons for
a breakdown of the classical solution in finite time. First, since (8) is a
hyperbolic system, it is possible that the solution looses regularity. The
second possibility is that the solution p(x, t) escapes any compact subset
Kc & in finite time. In this context it is interesting to note that the produc-
tion term r(p) has the tendency to bring the system closer to the boundary
of &. This is due to the fact that the collision operator Q relaxes the system
to a state described by local Maxwellian distributions. Local Maxwellians,
however, correspond to admissible a-vectors with a4 = 0 which are located
on dsf. Accordingly, the solution p will tend to d0l. Whether the solution
stays inside 01 during its evolution is a non trivial question whose answer
again requires knowledge of the set 01.

In Section 2 we first show that the structure of 0t is essentially deter-
mined by its intersection with the affine space {pe U5: po= 1, Pi = 0,
p2 = 1}. This reduced set is then characterized in Section 3. An estimate of
G{p) with p close to d$ is derived in Section 4. Then, the space homoge-
neous case is considered and some remarks on numerical aspects are given.

2. NORMALIZATION

In order to formulate results about the integrable exponential densities

it is convenient to introduce the larger class

which certainly contains E as a subset.
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Given any nonnegative density feD it is always possible to take out
three degrees of freedom. Denoting the moment vector of f by

where 9 = \/n j (v — u)2 f(v) dv is positive. Setting

we have H\{f*) = 0, and /Uo(/*) =^2(/*) = 1 which shows that f* has lost
three degrees of freedom compared to f in the sense that the first three
moments are constrained. The original density f can be recovered from F*
and n, u, 6 by

On the level of moments, this means that the set of moments p.(D) is essen-
tially characterized by the normalized moments (i(D*). More precisely,
p.(D) is easily recovered from /u(D*) using the map

we define macroscopical density n, average velocity u and temperature 6 as

where p*Sfi(D*), ueU and n, 9eU+. It therefore suffices to understand
the structure of the set /u(D*) which is given by

Lemma 2.1. The set of normalized moments of nonnegative den-
sities is

To any p efi(D*) there exists a continuous, compactly supported density
feD* such that p = n(f).



Proof. For any nonzero polynomial P(v) = co + c1v + c2v
2 and any

feD* with moments p=fx{f) we find

with the Hankel matrix

Due to (16) the matrix is positive definite so that
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is a necessary condition on the moments in n(D*).
Conversely, if the moment condition p4 > 1 + pi is satisfied, then the

sequence (1,0, I, p3,p4) is a particular example of so called positive
sequences.'2' A fundamental result in ref. 1 states that to a positive sequence
/?„,..., p4 there exists a positive measure

such that

In the following argument we show that a can even be replaced by a
measure which has a density / e D * . Geometrically (18) means that the vec-
tor p is contained in the interior of the conic hull of the vectors m(^t) since

If we approximate the vectors m(£() very accurately by vectors 1° then p
will also be in the conic hull of {/*:/= 1, 2, 3}, i.e.,
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Taking any symmetric, continuous, compactly supported function />eD*
we define I] as the moment vector of the scaled and shifted version

Then

v/ithf = J^t}i(/>eD*, which shows the sufficiency of the moment condition.
By construction, f is compactly supported and continuous. |

Having gained complete knowledge about the set fi(D), the next step
is to consider the subset fi(E) which contains the moments of exponential
densities (the set 0t in our notation from Section 1). Before we turn to this
problem in the next section, we give some remarks about the set E.

A nice property of the densities f{v) = exp(aTm(v)) is that they are
form invariant under the *-normalization, i.e., E* cE. Indeed, (13) shows
that

Similarly, the reconstruction formula (14) can be expressed as a relation
between a-vectors.

where — \v4(j>(v) dv. Hence, for £ small enough we can find positive
parameters //,• such that

which is of the form exp(a*rm(z;)) with a* obtained by comparing coef-
ficients in



which is characterized by the vector a = — ^(ln 2n, 0, 1, 0, 0 ) r and the
moments ^ = (1,0, 1,0, 3) r .

In order to characterize the set /<(£) = J \ or equivalently //(£*), we
use its relationship to the maximum-entropy problem (10). The argument
will be based on some general results which can be found for example in
ref. 10. For convenience, we list these results here.

Instead of working with the entropy functional / / ( / ) = — J / l n / r f r
directly, we consider the so called relative entropy

Under the constraint fi(f) = p, maximizing H(f) is therefore equivalent to
minimizing H(f, / ) .

We will use the following properties of the relative entropy.
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Under the *-projection, the special exponential densities correspond-
ing to ae3.s / (the Maxwellians) turn into the single point

3. DOMAIN OF DEFINITION

As reference density g we choose the standard Maxwellian f defined in (19).
Then

Lemma 3.1. Let f eD. Then

• flnf/f>-(\/e)f,
• H(f, f) is convex in f,

• if/e D* then H(f, / ) ^0 with equality only in the case / = /

. if /B->/ in ll(U) and (fm)neNcD* then / / ( / / ) <
lim inf „//(/„, / ) ,

. if F^D* is convex, ( /J n e Nc/- and //(/„, / ) - inf/eF//(/, / )< x
then / n -> / in L'(IR).



This shows that the relative entropy is well defined since the negative part
of / ln ( / / / ) is integrable. The convexity of H(f, f) in the first argument
follows directly from the corresponding property of x i-» x In x/y.

Since /, fe D* we have //0(/) -po{f) = 1 so that / / are in fact probabil-
ity densities. The remaining results can therefore be taken from Theorems 1.4.1,
1.5.5 and Theorem 3.1.1 in ref. 10. |

The second result we need for our argument concerns the solvability
of the entropy optimization problems on general intervals in v if the
prescribed moment vector p belongs to an exponential density.

Lemma 3.2. Let / c R be an interval and srf1 the set of all ae R5

such that exp(arm(i;)) is integrable on I. Further, let

Then the unique solution of the problem to minimize the relative entropy
H\f, / ) = \,f\n{flf) dv under the constraint / e D1 and p.I(f) = pe/uI(EI)
is given by
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Proof. Using the estimate x ln x ̂  —l/e we get immediately

and

The moments of feD1 are denoted by

where a is determined uniquely by the relation /ur(fopl) = p.

Proof. If we first restrict ourselves to the case po= 1, Theorem 3.1.4
in ref. 10 proves the result. The more general case 0 =£ 1 can easily b
reduced to the previous situation by noting that with pep-'iE1) also
(\lpo)pep.'(E') and that
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With these tools at hand, we can now characterize the n{E*) as the set
of those moment vectors for which the problem

is solvable.

Lemma 3.3. Let pep.{D*). Then the minimum in (21) is attained
if and only if pep.(E*).

Proof. First, we assume that pe/i(E*). Using Lemma 3.2 with / = IR
we see that (21) has a unique solution. Conversely, if (21) has a solution g,
then in particular g^0 such that for some noeM

On each interval In = {—n,n) with n^n0 the restriction gn then satisfies

because otherwise one could decrease H(g, f) by modifying g on /„.
Granted that (22) is uniquely solved by a function of the form

we can complete the proof of the lemma. Indeed, repeating the argument
on /„ with gn + l in place of g we find gn + l\In = gn, respectively an + , = a n

for all n^n0. This yields g(v) = exp(<xn
 Tm{v)) so that peju(E). The

required solvability of problem (22) is shown in the appendix. |

Although (21) might not be solvable for every pe/u(D), we can
nevertheless define the entropy function

To show that h is well defined, we use relation (14) which yields

Since H(f*,f)^0 (Lemma 3.1), we immediately get h(p)> - o o . On the
other hand, there is at least one distribution function / such that / / ( / , / )
is bounded so that also h{p)< oo. Such an / or more precisely its nor-
malization/*, is obtained with Lemma 2.1 due to the existence of a con-
tinuous, compactly supported solution / * of the moment problem.
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We note that h is closely related to the natural entropy rj of the hyper-
bolic system (8) which has been introduced in (11). Indeed, if p is taken
from the domain of definition peffl = /i{E) then Lemma 3.2 shows that

where a.(p) is the unique coefficient vector <x such that p.(exp(ot.(p)Tm)) = p.
Using (20) we get

so that rj differs from h only by a linear function in p. Since tj is C°° smooth
and strictly convex on3& (see ref. 6) the same holds for h. In the following
we need the important property that h is monotonically decreasing in p4.
For p e @ this is easily calculated using the relation

Then

The following Lemma shows that the two important properties of h which
are convexity and monotonicity in p4 are valid for all moment vectors in
ft{D*)..

Lemma 3.4. The entropy function h is convex and on fi{D*) it is
decreasing in the last argument i.e., for pefi(D*) and 8^0

In the interior of p.(E), h is even strictly convex and satisfies
(d/8P4)h(p)<0.

Proof. To check convexity of h we simply use the definition (23).
Given £ > 0 , pu p2eD and 2€ [0, 1 ] we can find densities / , , f2eD such
that n(f,) = Pi and H(ft, f)^h(p,) + s. Since D is convex, kfx +
(1 – X) f2 e D and hence
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Using convexity of H from Lemma 3.1, we conclude

On the set n(E) we have already seen that h(p) is strictly convex and strictly
decreasing in p4. To show the monotonicity in the last argument for the
general case, we again pick e>0, p=fi(f) with feD* and / / ( / , / ) <
h{p) + e. For S > 0, the moment vector p + Se4 is contained in D* according
to Lemma 2.1. A density freD, which approximately possesses this
moment vector is given by

with gr{v) = df(v — r) and Xr= l/4 sufficiently small. Indeed,

Due to convexity, h is continuous on n{D) so that

On the other hand, we know that

Since H{gr, f) = S \nd + (S/2) r2, we obtain h(pr)^h(p) + 2s for r
sufficiently large. Combining the two results we get

which completes the proof of the lemma. |

Finally, we are able to characterize the set p.{E*) completely.

Theorem 3.5. The set p.(E*) is given by

The entropy function h is strictly convex on /u(E*). Strict convexity is lost
on the half line {(1,0, 1, 0, p4)

T: p4 ^ 3} where h is equal to its absolute
minimum h(p) = 0.
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Proof. Given any pefi(D*) we define a non-empty convex set F by

Due to the definition of h we can find a minimizing sequence {fn)n6fi^F,
i.e.,

Using Lemma 3.1, we can infer the I '-convergence of (/„). The limit func-
tion/is even contained in D*. To see this, we first notice that with Fatou's
lemma

so that / e D . On the other hand, the uniform bound on the fourth order
moment yields convergence of all lower moments since for all R > 0

Using this estimate, we get with L1 convergence of (/„)

which shows that

From Lemma 3.4 we therefore get h(^i(f))^h(p). Combined with the
lower semi-continuity of the relative entropy from Lemma 3.1 this yields

In particular, h(fi(f)) = H(f, f) which, with the help of Lemma 3.3, shows
that fi(f)efi(E*). Invoking Lemma 3.2 with / = R we finally get

Consequently, the minimizing sequence always converges to an exponential
density. However it is not yet clear whether the constraint //(/) = p is
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satisfied. Due to (24) it can only happen that the fourth order moment
drops, i.e.,

To conclude the proof of the theorem, we distinguish two cases. First, we
assume that the coefficient vector a of the limit density satisfies a4 = 0.
In this case / must be the normalized Maxwellian so that p(f)=p =
(1, 0, 1, 0, 3)T. Consequently, the prescribed moment vector p must be con-
tained in the half line

which starts in the point p. At p one deduces from the definition of the
relative entropy h(p) = H(f, / ) = 0 which is the absolute minimum of h on
p.{D*) since H(g,f)^0 for all geD* (Lemma 3.1). Combined with the
monotonicity of h we conclude

In particular, if the constraint is based on peL then the limit density
/ = exp(<xrm) satisfies Q = h{p) = h{p.(f)) = H(f, f) which gives / = /
(Lemma 3.1) and hence

i.e., the highest component of the moment vector really drops in the limit.
In the remaining case <x4 < 0, we know from Lemma 3.4 that h is

locally strictly decreasing in the last argument. Together with the overall
monotonicity this yields h{p)=h(p.(f) + de4)<h(/u{f)) if <5>0, in con-
tradiction to (25).

Consequently, <S = 0 so that / satisfies the constraint .(f) = p and thus
is a solution of the optimization problem. Altogether we find that only for
peL the limit of the minimizing sequence does not satisfy the moment con-
dition fi(f) = p so that with Lemma 3.3

A graphical representation of the set p.(E*) in the (p3, p4) plane is given
in Fig. 1.

Finally, let us summarize the implications of Theorem 3.5 on the
moment system (8). Since /u{E*) is the intersection of the domain of defini-
tion M with the affine subspace
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the non convexity of fi(E*) immediately implies non convexity of M.
Nevertheless, fi(E*) is still star shaped with respect to the Maxwellian
point p. In Section 5 we will see that this is enough to guarantee that the
solution of the space homogeneous problem stays inside M for all times.

The second conclusion we draw from Theorem 3.5 is that the con-
tinuous extension of the natural entropyY] to the set //(£>) of all moments
of non negative densities is no longer strictly convex. In the next section
we show that a corresponding extension of the flux function G is not
possible since it is singular on the excluded half line so that the gap in the
domain of definition cannot be closed by extension. The singularity of the
flux function also has important consequences on numerical simulations
because evaluating the flux for states close to the half line is extremely
hard. In test cases like Riemann problems, however, the solution develops
exactly in this numerically dangerous area because the constant left and
right states are typically equilibrium states (i.e., Maxwellian states). A few
comments on numerical problems are given in Section 6.

We conclude with the remark that the considerations presented here
are also applicable to higher dimensional cases like the 14 moment system.
The main argument is again that the entropy function h has its minimum
in Maxwellian states and that it decreases in the last argument. Then,
automatically, it must be constant on half lines starting in Maxwellian
states with the same consequences as described above.

4. A FLUX ESTIMATE

Fig. 1. Structure of n(E*).

Recalling the definition of the flux vector G
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as
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we see that only the last component of G is non trivial. Indeed,
G(P) = (P, Pi, Pi, P4> GA,(PT with

For this velocity moment of order five it is possible to derive the following
estimate.

Lemma 4.1. Let p = p(ot)en(E*). Then

where equality appears only for the standard Maxwellian with p = p.

Proof. We start with the relation

which holds for any keN0 (the u*-moment is denoted pk). In the following,
we will concentrate on the equations k = 0,..., 3 which can be written in the
form

or introducing
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First we note that the symmetric matrix M is positive definite, since

Consequently, MD is invertible so that a = (MO)~' h. If a is in the interior
of J / , we know that

with c4 = (0, 0, 0, l ) r . In order to simplify this inequality further, we write
M as a block matrix

Obviously

and y — gTA 'g / 0 since M is regular. Hence

In particular

because M~l is the inverse of a positive definite matrix. Condition (26) is
therefore equivalent to

Now we use that p is normalized to write
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which gives

For peM* we have p4 — p\— 1 > 0 so that (27) with g = (p3, p4, p)T and
h = (0, –1,0, – 3 ) r transforms into

Replacing p5 = G4{p) and rearranging terms leads to the desired inequality

Inserting the special case p = p = (1, 0, 1, 0, 3 ) r we find equality. |

In the case p3 = 0 the Lemma yields the known condition (3 – p4)
(/?4— 1) ^ 0. On the one hand, p4 has to be less than three since otherwise
the moment vector is located on the forbidden half-line in Fig. 1. The
requirement p4 > 1 reflects the condition due to the parabolic boundary of
p.(D*).

A new result is obtained if we choose for example p3 > 0 and p4 ^ 3 + E
with e > 0 fixed. Then the inequality yields

Similarly, we get for p3 < 0 and p4 as above

Whether this singular behavior of the flux results in a tendency of the
system to draw away from the boundary is an interesting question whose
answer is not at all obvious.

A final remark concerns the relation between the system (8) and the
symmetric hyperbolic systems of gas dynamics considered in the theory of
extended thermodynamics.(9) It has been shown(3) that the systems of
extended thermodynamics can be derived by expanding systems which are
obtained from a maximum entropy approach like the one of Levermore.
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This expansion is carried out in the neighborhood of equilibrium, i.e.,
around a Maxwellian state. However, the resulting flux function neither has
singularities nor is there any restriction in the domain of definition locally
around equilibrium. This shows that in this approximation process impor-
tant features of the original system are lost. For initial values which are
close to equilibrium but also close to the excluded half line we can thus
expect a noticeable difference in the behavior of the maximum entropy
system versus the extended thermodynamics one.

5. THE SPACE HOMOGENEOUS CASE

The function r on the right hand side is obtained by integrating the
BGK-operator (7) after multiplying with the vector of monomials m(v). We
get

Conservation of the first three moments (mass, momentum and energy) is
reflected by r0 = rx = r2 = 0. Only for the third and fourth moment, Eq. (28)
is nontrivial. Using the relation between q, s and p we obtain

In the space homogeneous case, Eq. (8) turns into a system of ODEs
with the constant state p° e & as initial value

with n, u, 0, q, s depending on p according to
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with the abbreviation

We remark that n, u, 8 do not depend on time because they are calculated
from the constant moments p0, px, p2. The solution of the decoupled linear
system is easily found to be

To check whether the solution stays inside M we consider the correspond-
ing normalized moment vector. Inverting relation (15), we first obtain

Plugging in the solution of the space homogeneous problem, we find after
some algebra

Hence, the graph of the solution in the p.(E*} plane is just a straight line
connecting the normalized initial state p*(0) with the Maxwellian state
p = ( l , 0 ,1 ,0 , 3)T which is reached at f=oo. Since /u(E*) is star shaped
with respect to p the solution stays inside the domain of definition for all
times.

If we choose p(0) appropriately it can obviously be achieved that the
solution stays arbitrarily close to the boundary

Whether a slight perturbation of this homogeneous situation causes the
solution to leave the domain of definition or not is of course an interesting
question. Unfortunately, numerical experiments which could shed some
light on the problem are extremely difficult in that case, as explained in the
following section.
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6. NUMERICAL ASPECTS

To solve the moment system (8), any numerical method needs to
evaluate the flux

Assuming that <x.(p) is known wih a 0, the integral cannot be calculated
analytically so one has to resort to numerical quadrature rules.

A tempting idea is to use Gauss-Hermite integration of sufficiently
high order because this method reproduces the moments of a normalized
Maxwellian exactly. With a good guess of the first three moments (e.g., the
values from a previous time step) we can approximately normalize
exp(arm(u)) and if we are close to the normalized Maxwellian we would
expect precise results also in that case. However, the idea has two disad-
vantages. First, with Gauss integration the quality of the results is difficult
to estimate and second, the method cannot work for all vectors oc. To
calculate for example j vexp(a.Tm(v)) do with a = (0.00045, -0.0425,
-1.001, 0.02832, -0.000201 )T the function depicted in Fig. 2 has to be
integrated.

Gauss-Hermite integration even of order 20, however, uses informa-
tion of / only in the interval [ —5.5, 5.5] so that the contribution at vxlO
cannot be captured. To explain the underlying principle in the example we
consider the polynomial

Since <x4<0, P and hence also exp(/>) can have at most two maxima. If
a3/|a4| is large, one of these maxima can be located at v» 1. Indeed, for

Fig. 2. An example of u4exp(a7rn(u)).
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to vanish at large v, 3a3 + 4a4i; has to be close to zero which yields
i;«3a3/4 |a4|. An additional complication comes from the fact that height
and position of such maxima are extremely sensitive to the parameters a.
For the calculation of a moment vk this is disadvantageous in so far as
error in the height of the maximum is amplified by the large factor vk.

In the set p.{E*) (see Fig. 1) moment vectors corresponding to large
a3/|a4| ratios are situated around the excluded half-line. This in not sur-
prising if we reconsider the results of Section 4. We have seen that the fifth
order moment explodes if p approaches the half line while p4 stays
bounded. Such a behavior can be explained by a maximum in the corre-
sponding exponential densities which moves to infinity and is scaled in such
a way that its contribution to the fourth order moment 4  always (9( 1).
For all higher moments, the contribution due to this maximum then
obviously grows without bound. If Gauss-Hermite integration is used to
evaluate the flux function (as for example in ref. 5 for the 14 moment case)
these contributions at high velocities are automatically suppressed. Conse-
quently, the approximated flux function cannot show a singular behavior.
This is similar to the approach in extended thermodynamics which we have
discussed in Section 4. Here, the original exponential density is replaced by
a polynomial perturbation of the Maxwellian. Due to the slow growth of
polynomials at infinity compared to the exponential decay of the Maxwellian
these densities also do not show noticeable contributions at high velocities
so that the resulting flux function does not show a singular behavior.

Beside integrating moments of exponential densities, the evaluation of
the function a.(p) is a crucial step in the calculation of the flux G(p). The
guideline for this is already given in ref. 6. It turns out, that x(p) is the
unique minimizer of the problem

At this point, we just want to state a few properties of (30). It is a con-
strained minimization problem with the set constraint aej i /cR 5 . Since the
objective function z cannot be evaluated in the complement of s/ we have
to be careful in selecting search directions and doing line search in the
vicinity of dstf. Up to the inherent problems described above, calculating
arbitrary derivatives of z is of the same complexity as evaluating the objec-
tive function itself. We have
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The condition number of the Hessian matrix >?f is an indicator for the
expected degree of difficulty of problem (30) since it determines the speed
of convergence of the fundamental steepest descent method. For the
standard Maxwellian <x = (— In -Jin., 0, —1/2, 0, 0 r the condition number
is already 344 but the situation can be much worse as the example
a = (-0.9, -0.175, -0.526, 0.0594, -0.0017799)r shows, where the condi-
tion number is larger than 2 • 105. Again, this is not surprising since the
lowest diagonal element in the Hessian is the moment v8. In a situation like
in Fig. 2 this entry will be very large compared to the highest diagonal
element which is p0 = 1 in the normalized case. Since the condition number
can be estimated by the ratio between the largest and the smallest diagonal
entry we see that numerical problems in the calculation of a(/>) also occur
near the excluded half-line in the set n{E*).

7. CONCLUSIONS

We have analyzed the structure of the domain of definition of Levermore's
five moment system which can be viewed as a model problem for the full
dimensional case. The method is based on a detailed investigation of the
solvability of a corresponding maximum entropy problem. It turns out that
there are admissible moment constraints for which this maximum entropy
problem is not solvable. These exceptional moment vectors are charac-
terized as the set where the entropy function connected with Levermore's
hyperbolic system looses strict hyperbolicity and where the flux function
becomes singular.

This interesting behavior is not captured if the flux function is
approximated by certain quadrature rules or if an expansion around equi-
librium is applied as in the theory of extended thermodynamics. The solu-
tion of the space homogeneous problem has been shown to stay in the
domain of definition but what happens in the non homogeneous case
remains an open problem.

APPENDIX

Our aim is to show that the minimum

is attained whenever / is a bounded interval and pe^r(DT) (we use the
notation from Lemma 3.2). For the case / = [ 0 , 1] this result has been
proved in ref. 8 with a different technique. Since the statement holds if
psn'iE1) (see Lemma 3.2) it suffices to show / / (£ ' ) =/i /(D /).
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For a fixed pep.'{D') we introduce the C°°-function

which is strictly convex because of positive definiteness of the Hessian

In order to make sure that z1 does not attain its minimum at the boundary,
which is at |a| = oo in this case, we will show

Being sure that the minimum is attained for some finite a e R5 we get from
the necessary condition Vz7(a) = 0

which means pep:l{E'). Since obviously fiI(EI)<=fiI(DI) we thus proved
the

Lemma. Let / be a bounded interval. Then p.'(EI)=p.I(DI) which
means that the minimum in (31) is always attained.

All what remains to show is (32). For a given 0 # a e R 5 w e distinguish
two cases: First we assume a.Tm(v) < 0 for all veI. Since pen'(D') we can
write p=fiJ(f) with feD' and, due to the definition of D1, {vel:
f(v) >0} has positive measure in /. Hence also

has positive measure because {v: a.Tm(v) = 0} has measure zero by the
exclusion of a = 0. Consequently,

which gives (32) because z'(soc) > —srxTp.
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In the second case we can assume the existence of some v0 e I for
which ix.Tm(v0) > 0. Then, also on a small neighborhood Be I of »0 we can
obtain oiTm(v) ^ e > 0 for all v e B so that

which also gives (32).
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